Elimination of Halogen Radical Anions from Vic-Dihalides on exposure to High Energy Radiation by Shuddhodan P. Mishra and Martyn C. R. Symons Department of Chemistry, The University, Leicester, LE1 7RH.

(Received in UK 2 June 1975; accepted for publication 9 June 1975) Abstract : Vic-dihalides such as CH₂Cl-CH₂Cl, CH₂Cl-CH₂Br, CH₂Br-CH₂Br and CH₂I-CH₂I in methanol glasses at 77K gave strong e.s.r. signals characteristic of Cl₂⁻, BrCl⁻, Br₂⁻ and I₂⁻ respectively, after exposure to ⁶⁰Co γ-rays.

The normal reaction between alkyl halides and electrons is dissociative electron capture (1) RHal + e⁻ → R• + Hal.⁻ (1) However, vic-dihalides seem to be unique in preferring to undergo the elimination (2)

(2)

 $R_2C(Ha1) - R_2C(Ha1) + e^- \rightarrow R_2C = CR_2 + Ha1_2^-,$

in preference to (1). For the pure solids after irradiation, e.s.r. spectra were complex, and evidence for process (2) was somewhat ambiguous. However, the use of methanol (CO₃OD) glasses suppressed inter-molecular interactions, and the formation of electron-loss centres by the organic halides, and the e.s.r. spectra gave well-defined features characteristic of Hal_2^- radical ions.^{1,2}

In order to ensure that clustering was not occurring and facilitating inter-molecular effects, we studied solutions containing either CH_2CI-CH_2Br , or a mixture of CH_2CI-CH_2CI and CH_2Br-CH_2Br . The former gave features characteristic of BrC1⁻ with no sign of Cl_2^- or Br_2^- features, whereas the latter gave a mixture of features characteristic of both Cl_2^- and Br_2^- .

Methyl substitution had no effect on the relative yields of these anions, and dihalide anions were not obtained from 1,1- 1,3- or 1,4- dihalides under these circumstances. Thus process (2) seems to be quite characteristic of vic-dihalides, presumably because of the high stability of the olefinic product.

It is, of course, possible that the formation of Hal_2^- occurs in two stages, (3) and (4):

$$R_2C(Ha1) - R_2C(Ha1) + e^- \rightarrow R_2C(Ha1) - R_2C + Ha1^-$$
(3)

$$R_2C(Ha1) - CR_2 + Ha1^- \rightarrow R_2C = CR_2 + Ha1_2^-.$$
(4)

However, β -halo radicals, $R_2C(Hal)$ - CR_2 are usually stable at 77K ³⁻⁵ and it seems to us improbable that process (4) would occur spontaneously at that temperature. Since no spectra: features for β -halo radicals were detected, we favour the direct elimination (2).

REFERENCES

- (1) D. Schoemaker, Phys. Rev., 1968, 174, 1060.
- (2) I. Marov and M. C. R. Symons, <u>J. Chem. Soc. (A)</u>, 1971, 201.
- (3) A. R. Lyons and M. C. R. Symons, <u>J. Amer. Chem. Soc.</u>, 1971, <u>93</u>, 7330.
- (4) M. C. R. Symons, J.C.S. Faraday II, 1972, <u>68</u>, 1897.
- (5) A. R. Lyons, G. W. Neilson, S. P. Mishra and M. C. R. Symons, <u>J.C.S. Faraday II</u>, 1975, <u>71</u>, 363.

S.P.M. thanks the Department of Chemistry, Banaras Hindu University, India, for study leave.